Cost Sensitive Learning in the Presence of Symmetric Label Noise

Abstract

In binary classification framework, we are interested in making cost sensitive label predictions in the presence of uniform/symmetric label noise. We first observe that 0–1 Bayes classifiers are not (uniform) noise robust in cost sensitive setting. To circumvent this impossibility result, we present two schemes; unlike the existing methods, our schemes do not require noise rate. The first one uses $\alpha$-weighted $\gamma$-uneven margin squared loss function, $l_{\alpha, usq}$ , which can handle cost sensitivity arising due to domain requirement (using user given $\alpha$) or class imbalance (by tuning $\gamma$) or both. However, we observe that $l_{\alpha, usq}$ Bayes classifiers are also not cost sensitive and noise robust. We show that regularized ERM of this loss function over the class of linear classifiers yields a cost sensitive uniform noise robust classifier as a solution of a system of linear equations. We also provide a performance bound for this classifier. The second scheme that we propose is a re-sampling based scheme that exploits the special structure of the uniform noise models and uses in-class probability estimates. Our computational experiments on some UCI datasets with class imbalance show that classifiers of our two schemes are on par with the existing methods and in fact better in some cases w.r.t. Accuracy and Arithmetic Mean, without using/tuning noise rate. We also consider other cost sensitive performance measures viz., F measure and Weighted Cost for evaluation.

Publication
PAKDD 2019: Advances in Knowledge Discovery and Data Mining
Sandhya Tripathi
Sandhya Tripathi
Postdoctoral Research Associate

My research interests include clinical prediction model, fairness in AI models, database matching, and learning in the presence of label noise.